
Seminar Paper: A look at Bochspwn - Identifying and Exploiting
Windows Kernel Race Conditions via Memory Access Patterns

Benjamin Halbrock

Abstract
Bochspwn by Mateusz Jurczyk and Gynvael Cold-
wind uses the Bochs X86 Emulator [1] to identify
race conditions at the userland kernel boundary by
analysing runtime memory access patterns. The pa-
per analyzes the Windows NT kernel, identifies mul-
tiple candidates of such race conditions and discusses
techniques for a successful exploitation, like a way to
widen the attack window.

1 Introduction

As computers become increasingly prevalent, much
effort is spend on securing them. Of big concern
is not only the hardening of user applications but
also finding and fixing bugs within the kernel of the
operating system and its interfaces to userland.

Bochspwn is an instrumentation module for the
Bochs X86 Emulator which is used to find a special
case of race conditions between kernel and userland
threads called double fetches. To do so it analyzes
memory access patterns at runtime.

These double fetches can result in information dis-
closure of kernel data, a denial of service attack, or
a successful local privilege escalation and therefore
a possible sandbox breakout [6, p. 4f, 48f, 65]. This
predicate does not only apply on multi-core systems,
but is also true for single-core systems [8, p. 6].

As the testing of the yet unproven technique of
using memory access patterns to identify double
fetches [8, p. 5] called for fast iterations, the authors
chose the Bochs X86 Emulator as the basis for their
implementation. Bochs as an open source project
could, as expected, easily be modified to fit their
needs [6, p. 11]. The result of their efforts is called
Bochspwn, an instrumentation module for Bochs,
and has identified over 80 potential bugs within the
Windows kernel [4, p. 23].

The following section gives some background in-
formation about synchronisation when using shared
memory and explains the time-of-check-to-time-of-
use race condition together with an introduction into
exploitation techniques for this kind of bug. Section
3 focuses on the approach taken by Mateusz Jur-
czyk and Gynvael Coldwind and explains the major

design decisions, along with remarks regarding the
paper. It is followed by a discussion of techniques to
widen the window of opportunity for an successful
attack. The paper finishes by giving an overview of
the consequences the initial publication had on the
research community and a short conclusion.

2 Background

This section explains the technical circumstances in
greater detail. The idea of shared memory as a
technique for communication between threads is in-
troduced first. Then the Windows address space
layout is explained, followed by an explanation of
the problem of synchronisation when using shared
memory on the example of double fetches. Lastly
two techniques for (ab)using the race condition
bugs under Windows get explained.

2.1 Shared Memory

It is very common to share data within an oper-
ating system by mapping memory segments in the
address spaces of different threads. The main ad-
vantage of this technique is that once the mapping
has been established there is no additional overhead
when writing or reading data, as each thread can
freely read and write its memory segment. Those
memory segments can additionally be used between
threads with different access rights and are used for
some communication between threads in userland
and kernel routines in Windows. When data is trans-
ferred via a shared memory segment, special care
must be taken to synchronise concurrent accesses,
as by default there is no such mechanism.

2.2 Windows address space

The Windows kernel separates the address space
in two parts. A system wide kernel address space
and many (mostly one per thread) user address
space regions, which can be accessed in user- and
kernel-mode. The boundary is set at the address
0x8000 0000 and visualised in Figure 1. For a
thread in kernel-mode the userland portion of the

1 c© University of Karlsruhe
September 30, 2017, 18:33



address space is freely read- and writeable. By hav-
ing a pointer at it, any data is basically an implic-
itly shared resource for a kernel-mode thread [6, p.
2]. Because of this fact, a user-mode thread can
share data with a kernel thread by simply passing a
pointer.

kernel address space

user address space

8000 0000

0000 0000

FFFF FFFF

Figure 1: Address space seperation in 32bit Win-
dows

As a Windows kernel thread can access the global
kernel data and the data of the user thread without
special checks, a pointer into the userland portion of
the address space can be modified to point into the
kernel address space by flipping bit 31 (XOR 0x8000
0000).

2.3 Double Fetches

Even when there are synchronisation mechanisms in
place, a communication partner can simply chose not
to participate [8, p. 4]. To eliminate this problem
and to maintain consistency of userland data while
in kernel mode a kernel routine normally copies the
needed data into a local buffer [6, p. 2].

If the kernel routine fetches the underlying value
multiple times, for example when first checking the
size of the given value and a second fetch for copy-
ing the data, all the conditions for a special kind
of race condition are met. These types of race con-
ditions are called time-of-check-to-time-of-use race
conditions or double fetches in short [7].

Double fetch means that the value read on the first
access does not have to match the value of the fol-
lowing fetches, thus breaking the assumption of the
developer of it staying the same. This broken as-
sumption can have undesirable effects when a kernel
function firstly checks the value, which is then imme-
diately changed by an application in userland, and fi-
nally the changed and now unchecked value gets used

in the kernel function. This unchecked value can now
directly influence kernel memory, which should be
unread- and unchangeable by applications in user-
space. Take a simple copy operation as an example.
The userland process calls the kernel function with
a pointer to the data and a pointer to the size of
the data. The kernel function then uses the given
size to check whether the data fits in an allocated
buffer. Directly after this check, the data should be
copied based on the previously checked size. But
in the instance of a double fetch bug, the size gets
fetched twice. Once for the check and a second time
for the actual copy operation. By double fetching,
the value can be different on the second fetch and
the copy operation, which is running in kernel-mode,
can now read or write out of the previously checked
bounds.

2.4 Exploiting the race condition

A simple exploit uses two threads, one executing the
syscall (the racing thread), and a different one, the
flipping thread, trying to change the shared value
at the right moment. The right moment for altering
the shared data is after all checks are performed and
before the data is copied in a local and secure buffer.

The raced value can be:

• a pointer to some value in memory

• a buffer size, a so called arithmetic race
(shown in Listing 1)

If the shared value is given by a pointer, the
attacker can use the XOR instruction on the bit
0x8000 0000. This instruction will flip the pointer
between user- and kernel-space, as illustrated in Fig-
ure 1. Although such an attack is precise in the value
it flips to, it is less likely to succeed than an arith-
metic race, as it requires an uneven number of flips,
leading to a maximum winning ratio of 50 percent.
The other case is changing a given size value for a
buffer, an arithmetic race. An example is given in
Listing 1.

Listing 1: Example of an arithmetic race, where
BufferSize is the raced value [5]

PDWORD BufferSize =

/* user -mode address */;

PUCHAR BufferPtr =

/* user -mode address */;

PUCHAR LocalBuffer;

LocalBuffer = ExAllocatePool(

PagedPool , *BufferSize );

2 c© University of Karlsruhe
September 30, 2017, 18:33



if (LocalBuffer != NULL) {

RtlCopyMemory(LocalBuffer ,

BufferPtr , *BufferSize );

} else {

// bail out

}

Winning an arithmetic race is much easier, as an at-
tacker can add some value to the given buffer-size,
resulting in data of a different size than checked be-
ing read or written by the kernel, possibly breaking
boundaries. A shortcoming of the arithmetic races
is that they are imprecise as it is not clear how often
the flipping thread is modifying the given value [4, p.
11].

3 Approach

To identify possible double fetch candidates Jurczyk
and Goldwind started by analysing known bugs and
identified common traits of interesting memory ac-
cesses [6, p. 14ff] of time-of-check-to-time-of-use race
conditions:

• the code executes in kernel mode
this can lead to false positives in the recognition
of double fetches, but as those mostly occur dur-
ing the initialisation and boot process, they can
be easily filtered out

• at least two reads from the same virtual address

– writeable from user space
as checking the actual mapping for ev-
ery memory access would be very slow
(traversing page tables), it is initially only
checked whether the address is ”within the
user-mode virtual address space bound-
aries” [6, p. 16]. This check serves as a
fast filter.

– within a short time frame
particularly within one syscall. This re-
quires keeping a larger cache of memory
reads and detecting sysenter and sysexit
instructions. The actual detection code
can afterwards use real timing information.

They decided to extend the Bochs X86 CPU emu-
lator, as it can be easily modified, by using the pro-
vided hooks, and different strategies for analysing
the system can be tested. A major downside of this
approach is the slow speed that the analysed system
is running at, as all instructions are emulated. The
chosen approach is by design unable to detect shared
memory communication between an untrusted pro-
cess and a system- or administrator-owned process,

or hypervisor mode double fetches [6, p. 16]. This
restriction exists, because only code with an execu-
tion origin in kernel-mode is logged and inspected,
leading to an additional slowdown of those sections.
By analysing all memory accesses, using a tree or
hash-map, it should be possible to also detect those
double fetches, but this was outside the scope of the
paper and would probably be even slower.

A faster technique is modifying the exception-
handler of the operating system. This approach will
not slow the system down very much, but requires
patching the Operating System, which can be cum-
bersome. Another possibility is to use a hypervisor
to detect double-fetches. This solution does also not
result in a huge slowdown of the system, as most
code can run natively and only interesting sections
need to be inspected by the hypervisor. Although
it is harder to implement F. Wilhelm did so in [8].
The approach of tracing memory accesses of shared
pages proved to be faster, but less flexible, e.g. for
collecting stack traces. Further possibilities would
be doing a static code analysis, which is very hard
when dealing with hardware drivers and low level in-
structions, or the usage of a hardware CPU debugger
which is very expensive [3, minute 5ff].

Another inherent problem of a runtime analysis is
code coverage. To test as many syscalls as possible
the team was ”running various additional applica-
tions within the guest (like programs making use of
the DirectX API), as well as the Wine API unit-test
suite” [6, p. 24], resulting in an instruction coverage
of about 40% in the ntoskrnl.exe (the Windows ker-
nel) and about 50% in win32k.sys (the kernel-mode
device driver) [2] [3, minute 30ff]. Unfortunately the
basis for those numbers is not clear.

The basic procedure to finding bugs using
Bochspwn is [4, p. 20]:

• start an operating system within Bochs with
Bochspwn enabled

• run interesting (invoking syscalls) programs like
benchmarks or test-suites

• wait for all tests to finish and the OS shutdown

• process and filter the generated logfile

To identify double fetches Bochspwn implements
an offline and online mode. Both are watching all
memory accesses from kernel-mode into userspace
(most significant bit in 32bit mode, most significant
16bits in 64bit mode) operating with ring-0 privi-
leges [6, p. 15]. To find those accesses and differ-
entiate between syscall handlers, Bochs is hooked to
watch for syscall and sysenter instructions. Linear

3 c© University of Karlsruhe
September 30, 2017, 18:33



memory accesses are additionally hooked to identify
the physical address and perform checks to filter out
uninteresting memory accesses. The offline mode
writes a log of all those memory accesses along with
debug information. This process generates a logfile
that can easily reach a size of a hundred gigabytes [6,
p. 23].The online mode on the other hand is writing
only a small log of possible double-fetch candidates,
by doing an online check against the known double-
fetch access patterns, increasing the CPU and mem-
ory usage. The online-mode holds a cache of recent
memory accesses of a thread for these checks, which
gets evaluated for double fetch candidates on the
next sysenter instruction.

Additional debug information like the process id
and the call stack is gathered by parsing the kernel-
memory structures of the emulated operating sys-
tem. The information gathering slows the execu-
tion down considerably, is highly system specific and
needs to be adjusted for every guest operating sys-
tem. A Windows boot takes about 20 minutes in
offline mode and about 35 minutes in online mode.
It is relevant to note that the offline mode, while
offering more flexibility in the analysis, requires ex-
tensive post processing like splitting the logfile, re-
moving noise produced by some drivers and finding
double fetches within the log. The post processing
takes minutes per step and depends on the size of
the logfile [6, p. 23]. The online mode does all of
these checks at runtime and is approximately two
times slower than the offline mode [6, p. 24].

The authors then manually validated double fetch
candidates found this way and reported them to Mi-
crosoft.

3.1 Widening the window of oppor-
tunity

Mateusz Jurczyk and Gynvael Coldwind identified
two classes of possible exploitation methods for a
double fetch vulnerability and differentiated them
by the raced value:

• a pointer to some value in memory
(precise, but less likely to succeed)

• a buffer size, a so called arithmetic race
(imprecise, but more likely to succeed)

As both of them get explained in Section 2.4,
this section instead explains methods to increase the
chance of winning such a race. One class of those
techniques focuses on widening the opportunity for
a successful exploitation by enlarging the time win-
dow in which the raced value can be flipped.

To show that even double fetches that are exe-
cuted right after another can be a viable target for
exploitation, the authors evaluated multiple tech-
niques to extend the time window for exploitation
and therefore the win ratio.

A very effective technique the authors found, is
to split the shared value over two physical memory
pages. The flipping thread will now flip the lower
half of the address, only fetching one page, while
the kernel function will have to fetch two pages. The
optimal setup which leads to an five times increase of
the execution time [4, p. 29] can be seen in Figure 2.

fffe 0000

page boundary

mov eay, [ecx] xor word [ecx], 0x8000

jmp $ - 5

0 8 16 24 32

Thread 0, CPU 0 Thread 1, CPU 1

Figure 2: shared value crossing page-boundary [6, p.
31] on little endian (thread 0 is the kernel thread)

The parameters to choose for the individual pages
are architecture dependant. According to their mea-
surements the best solution for hyper-threading is
to have one flipping and one racing thread share
one physical core and to leave all caches enabled, so
that the raced value can reside there and be rapidly
flipped [4, p. 46].

When running on physical cores, disabling the
caches for the racing thread is the way to go [6,
p. 38ff]. Caches for a page can be disabled by a
thread in user-mode by using VirtualAlloc with the
PAGE NOCACHE flag.

In some cases it is a good idea to flush the transla-
tion lookaside buffer (TLB) to slow down the kernel-
mode thread. The subsequent page walk takes over
2500 cycles and can be achieved by calling Virtual
Unlock on unlocked pages. This call is always cost
effective [4, p. 41], as it costs less cycles to call
than the overhead it introduces to the next fetch.
A downside of this approach is that it has to be
precisely timed, that only the kernel-mode thread
will have to perform the page-table-walk and that it
slows down the racing thread. Because of this slow-
down, flushing the TLB will not always result in a
higher win ratio [6, p. 34f].

4 c© University of Karlsruhe
September 30, 2017, 18:33



3.2 Consequences

Mateusz Jurczyk and Gynvael Coldwind showed
that a runtime analysis of memory access patterns
is a viable way to identify time-of-check-to-time-of-
use race conditions without needing to modify an
existing operating system or special hardware. As
emulating an X86 CPU comes at a big performance
penalty, the authors mention working on a Virtual
Machine Monitor (VMM) based solution called Hy-
perPwn [6, p. 64]. Unfortunately it does not seem
to have been fully implemented or released. For-
tunately Felix Wilhelm successfully implemented a
VMM based memory access pattern analyser in his
master thesis Tracing Privileged Memory Accesses to
Discover Software Vulnerabilities [8], showing that it
can be done and is reasonably fast. It is interesting
to note that some of the disclosed bugs were proba-
bly caused by a shared macro and that Microsoft did
analyse and fix the root cause of these issues [6, p.
41, 58].

4 Conclusion

Mateusz Jurczyk and Gynvael Coldwind showed
that time-of-check-to-time-of-use race conditions on
the userland kernel boundary can be found by
analysing memory access patterns at runtime. The
solution they created is called Bochspwn. It is an
instrumentation module for the Bochs X86 emula-
tor featuring an online and offline mode. Exploits
for those double fetches differ in the raced value. It
can either be a pointer or a buffer-size. Attacking
buffer size is called an arithmetical race and more
likely to succeed than attacking a pointer, which is
more precise. The last section focused on widening
the window of opportunity of an attack by having
the raced value split across two pages. The winning
idea is then, to only enable caches for the page the
racing thread is modifying, while having the other
thread fetch both pages.

By identifying, validating and getting new bugs
closed, Bochspwn proved to be a viable solution for
finding and analysing double fetch bugs within the
real world.

References

[1] bochs: The Open Source IA-32 Emulation
Project http://bochs.sourceforge.net/.

[2] Deeper into Windows Architecture
https://blogs.msdn.microsoft.

com/hanybarakat/2007/02/25/

deeper-into-windows-architecture/.

[3] M. Jurczyk and G. Coldwind. Bochspwn - iden-
tifying 0-days via system-wide memory access
pattern analysis. Black Hat USA https://www.

youtube.com/watch?v=ypV0kpi4cd8, 2013.

[4] M. Jurczyk and G. Coldwind. Exploiting ker-
nel race conditions found via memory access pat-
terns. In SyScan, 2013.

[5] M. Jurczyk and G. Coldwind. Kernel double-
fetch race condition exploitation on x86 further
thoughts, jun 2013. http://j00ru.vexillium.

org/?p=1880.

[6] M. Jurczyk, G. Coldwind, et al. Identifying
and exploiting windows kernel race conditions
via memory access patterns. 2013.

[7] F. J. Serna. Ms08-061 - the case of
the kernel mode double-fetch, 2008.
https://blogs.technet.microsoft.com/

srd/2008/10/14/ms08-061.

[8] F. Wilhelm. Tracing privileged memory accesses
to discover software vulnerabilities. 2015.

5 c© University of Karlsruhe
September 30, 2017, 18:33

http://bochs.sourceforge.net/
https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-windows-architecture/
https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-windows-architecture/
https://blogs.msdn.microsoft.com/hanybarakat/2007/02/25/deeper-into-windows-architecture/
https://www.youtube.com/watch?v=ypV0kpi4cd8
https://www.youtube.com/watch?v=ypV0kpi4cd8
http://j00ru.vexillium.org/?p=1880
http://j00ru.vexillium.org/?p=1880
https://blogs.technet.microsoft.com/srd/2008/10/14/ms08-061
https://blogs.technet.microsoft.com/srd/2008/10/14/ms08-061

	Introduction
	Background
	Shared Memory
	Windows address space
	Double Fetches
	Exploiting the race condition

	Approach
	Widening the window of opportunity
	Consequences

	Conclusion

